DNA cleavage induced by glycation of Cu,Zn-superoxide dismutase.

نویسندگان

  • H Kaneto
  • J Fujii
  • K Suzuki
  • H Kasai
  • R Kawamori
  • T Kamada
  • N Taniguchi
چکیده

Human Cu,Zn-superoxide dismutase (Cu,Zn-SOD) undergoes site-specific and random fragmentation by non-enzymic glycosylation (glycation). Released Cu2+ from the glycated Cu,Zn-SOD probably facilitates a Fenton reaction to convert H2O2 into hydroxy radical, which then participates in the non-specific fragmentation [Ookawara et al. (1992) J. Biol. Chem. 267, 18505-18510]. In the present study, we investigated the effects of glycated Cu,Zn-SOD on cloned DNA fragments and nuclear DNA and analysed the formation of 8-hydroxydeoxyguanosine (8-OH-dG). Incubation of cloned DNA fragments with Cu,Zn-SOD and reducing sugars resulted in cleavage of the DNA. The extent of the cleavage corresponded to the reducing capacity of the sugar. Metal-chelating reagents, EDTA and bathocuproine, and an H2O2 scavenger, catalase, inhibited the DNA cleavage. Hydroxy radical scavengers and aminoguanidine, an inhibitor of glycation, also inhibited the reaction. Moreover, the glycation of Cu,Zn-SOD caused the substantial formation of 8-OH-dG in DNA. When isolated nuclei were incubated with CuCl2 plus H2O2, nuclear DNA cleavage was observed. Incubation of isolated nuclei with Cu,Zn-SOD that had been pre-incubated with glucose also resulted in nuclear DNA cleavage. These results suggest that hydroxy radical is produced through a Fenton reaction by Cu2+ and H2O2 released from the glycated Cu,Zn-SOD, and participates in nuclear DNA cleavage. This mechanism may partly explain the deterioration of organs under diabetic conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glycation and inactivation of human Cu-Zn-superoxide dismutase. Identification of the in vitro glycated sites.

The nonenzymatic glycosylation (glycation) of Cu-Zn-superoxide dismutase led to gradual inactivation of the enzyme (Arai, K. Iizuka, S., Tada, Y., Oikawa, K., and Taniguchi, N. (1987) Biochim. Biophys. Acta 924, 292-296). The purified superoxide dismutase from human erythrocytes comprises both glycated and nonglycated forms. The nonglycated Cu-Zn-superoxide dismutase was isolated by boronate af...

متن کامل

Regulation of the synthesis of superoxide dismutases in rat lungs during oxidant and hyperthermic stresses.

Heat shock proteins are induced at normal temperatures by oxidants and during reoxygenation following hypoxia. We now report cyanide-resistant O2 consumption increased 30-50% in rat lungs exposed to heat shock or reoxygenation following hypoxia. The synthesis of Cu,Zn superoxide dismutase, but not Mn superoxide dismutase, was increased in rat lung slices by in vivo hyperthermia (39 degrees C), ...

متن کامل

Antisense and RNAi expression for a chloroplastic superoxide dismutase gene in transgenic plants

The cDNA of tomato chloroplastic Cu/Zn-superoxide dismutase was used to construct transgenic tobacco (Nicotiana plumbaginifolia). It was found that the gene expression of Cu/Zn-superoxide dismutase can constitutively be reduced in the transgenic tobacco plants because of double-stranded (dsRNA) expressed in the form of intronspliced hairpin structures and antisense suppression. Furthermore, the...

متن کامل

Superoxide dismutase and catalase inhibit oxidized low-density lipoprotein-induced human aortic smooth muscle cell proliferation: role of cell-cycle regulation, mitogen-activated protein kinases, and transcription factors.

Several antioxidant enzymes, including copper, zinc-superoxide dismutase (Cu, Zn-SOD) and catalase, have been suggested to be protective against the proliferation of vascular smooth muscle cells exposed to oxidative stress. In the present study, we investigated effects of Cu, Zn-SOD and/or catalase on oxLDL-induced proliferation of, and intracellular signaling in, human aortic smooth muscle cel...

متن کامل

Advanced glycation end products accelerate rat vascular calcification through RAGE/oxidative stress

BACKGROUND Arterial media calcification (AMC) is highly prevalent and is a major cause of morbidity, mortality, stroke and amputation in patients with diabetes mellitus (DM). Previous research suggests that advanced glycation end products (AGEs) are responsible for vascular calcification in diabetic patients. The potential link between oxidative stress and AGEs-induced vascular calcification, h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 304 ( Pt 1)  شماره 

صفحات  -

تاریخ انتشار 1994